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Intelligence in Language

Scaling Law in Neural Models
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[1] Scaling Laws for Neural Language Models. 2023



Intelligence in Language

® LLMs leading to Human-level Al

Ha)  You
What am | really trying to say when | tell my friend "Go try that restaurant™?

E? Unprecedented in-depth

language semantic

understandin & capa bfm}’- ChatGPT

When you tell your friend "Go try that restaurant™, you're conveying a few different things:

1. Recommendation: You're suggesting that the restaurant is worth visiting, implying that you
believe the food, service, or atmosphere is good.

2. Encouragement: You're encouraging your friend to have a new experience, possibly one that
you think they'll enjoy.

3. Sharing Experiences: If you've already visited the restaurant, you might be sharing something

you enjoyed, hoping your friend will also appreciate it. If you haven't been, it could be a

suggestion to explore something new together or independently.
4. Trust and Influence: Your recommendation reflects your taste and judgement, and it shows

that you're willing to influence their decision based on your own preferences or experiences.

Essentially, it's a friendly way to enhance your friend’s dining options based on your positive

assessment or curiosity about the restaurant.




Intelligence in Language

LLMs leading to Human-level Al

[‘\’? Numerical analysis capability.

You

The midterm exam results are out. Tom's scores in Mathematics, Art and English are 89, 90, and
97, respectively; Jason's scores in Mathematics, Art and English are 90, 87, and 92, respectively.
Please tabulate these students’ scores, calculate the total scores, and then sort them by the total
score.

ChatGPT
Here are the scores for Tom and Jason in tabular form, including their totals for each subject and

sorted by the total scores:

English Mathematics
a7 89
92 90

189

From the table, it's clear that English has the highest combined score, followed by Mathematics

and then Art. (-



T T You
| n t e | | I g e n C e I n I_ a It is known that the price of one desk is ten times that of one armchair. It is also known that one

desk is 378.9 dallor more expensive than one armchair. How much does one desk and one
armchair each cost?

® LLMs leading to Human-le

ChatGPT

Let's set up the problem and solve it:
[‘\’? Mathematical reasoning ability.

1. Let the price of the armchair be & dollars.
2. Then, the price of the desk is 10z dollars.

3. It is given that the desk is 378.9 dollars more expensive than the armchair.

Thus, the equation based on the above information is:

10z = =z + 378.9
We can solve this equation for 2:

10z — =z = 378.9
9r = 378.9

Therefore:

» The price of the armchair is 42.1 dollars.

» The price of the deskis 10 x 42.1 = 421 dollars.
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® LLMs leading to Human-level Al
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[1] A Survey of Large Language Models. https.//qithub.com/RUCAIBox/LLMSurvey, 2023
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Intelligence in Language

Very Rapid Evolvement of Language-based LLMs
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Intelligence in Multi-Sensory Data

Harnessing Multimodality

Eg This world we live in is replete with
multimodal information & signals,

not just language.
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Intelligence in Multi-Sensory Data

Harnessing Multimodality

@ This world we live in is replete with multimodal information & signals, not just language.

Autonomous Driving Systems

In this application, vehicles
use a combination of visual
data (cameras), spatial data
(LiDAR), and auditory signals
(sonat) to navigate safely.

Healthcare Diagnostics

Medical imaging tools like
MRI, CT scans, and X-rays,
along with patient history
and verbal symptoms, are
used to diagnose diseases.

Smart Home Assistants

Devices like Amazon Alexa
and Google Home use voice
commands (audio), physical
interaction (touch), and
sometimes visual cues to

operate.
) S
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Intelligence in Multi-Sensory Data

® Building Multimodal LLMs (MLLMs)

Eg’ Can we transter the success ot LLMs to MILLMs, enabling I.ILLMs to comprehend multimodal information

as deeply as they understand language?
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Eg’ Perceiving and interacting with the world as HUMAN BEINGs do, might be the key to achieving
human-level AL

L
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Intelligence

in Multi-Sensory Data

Trends of MLLMs
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[1] A Survey on Multimodal Large Language Models. https://qithub.com/BradyFU/Awesome-Multimodal-Large-Lanquage-Models, 2023.
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From MLLMs to Human-level Al

Goal of This Tutorial

What are now?

Walking through the recent key techniques on MLLM constructions in terms of the four key aspects.

Taxonomies of existing research.

Where to go next?

Key insights, current challenges & open problems.
Sparking promising directions for tackling complex reasoning tasks.

How to build next generation MLILMs?

15



From MLLMs to Human-level Al

® Four Key Aspects for Building Powerful MLLMs
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From MLLMs to Human-level Al

Aspect-A

Hao Fei

National University of Singapore

Yuan Yao

National University of Singapore

Architecture&
\Modality of MLLMs)

“What is the current architecture of
MIIMs? What modalities and functionalities
do MLIMs support? How can MILLMs be

categorized? What will the next generation of
MLLMs look like?”

Tuesday, May 21, 2024
14:10-15:40 Local Time
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From MLLMs to Human-level Al

Aspect-B
(3 Multimodal Instruction Tuning in MLLMs

2
G : T
. = -‘, N il
sy ’.,@
£ N b7
Rl S ;AN
>€“'\ AN A /
I\ _,}I)Su' A . ’ \t .

Fuxiao Liu
University of Maryland, College Park

Il

C=D

Instruction Tuning

“Why do we need Multimodal Instruction
Tuning ? What are the training strategies of
Multimodal Instruction Tuning? How can we
get the high-quality data for the instruction
runing? What ‘s the challenge of the current
Multimodal Instruction Tuning?”

Tuesday, May 21, 2024
15:40-16:00 & 16:30-16:50 Local Time
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From MLLMs to Human-level Al

Aspect-C
(3 Multimodal Reasoning in MLLMs

Zhuosheng Zhang
Shanghai Jiao Tong University

O
v

Human-level
Reasoning

“What are the latest developments in multimodal
reasoning? How does stepwise chain-of-thought
reasoning enhance multimodal reasoning? In what
ways do multimodal LILM agents improve the ability
to solve complex problems? What are the remaining
key challenges in advancing multimodal reasoning?

Tuesday, May 21, 2024
16:50-17:30 Local Time

»
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From MLLMs to Human-level Al

Aspect-D
(3 MLLM Efficiency

Ao Zhang

National University of Singapore

Cgﬁ’rr‘uc’rlon
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“What is the most efticient MLLM
architecture to achieve high performance?
How to choose and organize the data to
build a powertul MLIM? Are there training
strategies to build new MLLMs or extend
function scope efficiently?”

Tuesday, May 21, 2024
17:30-18:00 Local Time

20



From MLLMs to Human-level Al

® Schedule Overview

* Tuesday, May 21, 2024
e Torino, ltalia
* 14:00-18:00 Local Time

14:00-14:10
14:10-15:40
15:40-16:00

16:30-16:50
16:50-17:30
17:30-18:00

Part 1: Background and Introduction
Part 2: MLLM Design: Architecture and Modality

Part 3: Multimodal Instruction Tuning in MLLMs

Part 3 (Cont’d): Multimodal Instruction Tuning in MLLMs
Part 4: Multimodal Reasoning in MLLMs
Part 5: MLLM Efficiency

Hao Fei
Hao Fei & Yuan Yao

Fuxiao Liu

Fuxiao Liu
Zhuosheng Zhang
Ao Zhang

21



From MLLMs to Human-level Al

Contact & QA & Discussions

All slides and reading list are available at tutorial homepage:

https:/mlim2024.g1thub.10/COLING2024

We welcome all Q&A and discussions via Google Group:

> Post your questions on Google Group:

https://groups.google.com/g/mllim24

> Email us:

mllm24@googlegroups.com

22
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