

From Multimodal LLM to Human-level Al

Modality, Instruction, Reasoning, Efficiency and Beyond

https://mllm2024.github.io/COLING2024

LREC-COLING 2024

Hao Fei
National University of Singapore

National University of Singapore

ZhuoshengZhang Shanghai Jiao Tong University

FuxiaoLiu
University of Maryland, College Park

Ao Zhang
National University of Singapore

Tat-Seng Chua
National University of Singapore

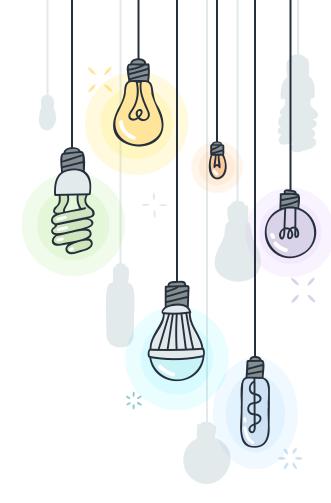
Efficient MLLM

Ao Zhang

PhD Student

National University of Singapore

https://waxnkw.github.io/



* Table of Content

+ 1 Efficient MLLM

- × Overview
- × Efficient Architecture
- × Data
- × Training Strategy
- × Acceleration Techs

• What do you mean by saying efficient MLLM?

Given a target performance, we want to reduce the cost for training and inference.

Architecture: some architectures are more efficient.

Data: data source and arangement are important

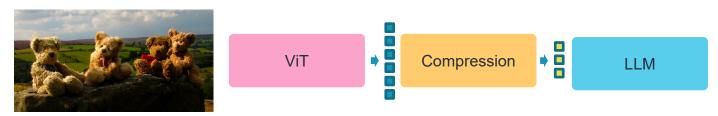
Training Strategy: use transfer learning or connect to pre-trained tools

Acceleration Techs: use Deepspeed for training acceleration

* Architecture

Visual encoding

High-resolution is a key factor for MLLM's performance. But high-res lead to significantly more tokens.

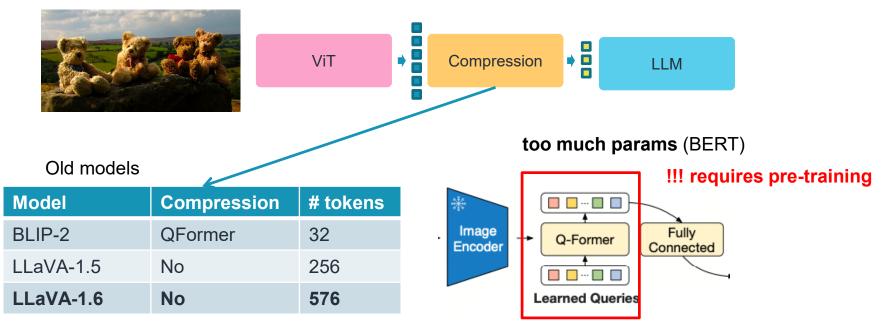


CLIP ViT-L/14

res.	#tokens
224x224	256
336x336	576
448x448	1024

Visual encoding

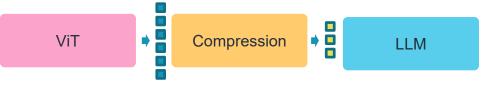
The innovation for efficiency in architecture mainly lies on visual encoding.



* Architecture

Visual encoding

Solution: light-weight compression layer.



new models

Qwen-VL

MiniCPM-V2

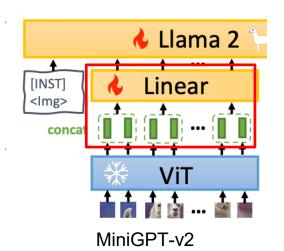
MiniGPT-v2

CogAgent

1 layer cross-attention

merge adjacent tokens with Linear

low-res feature as queries

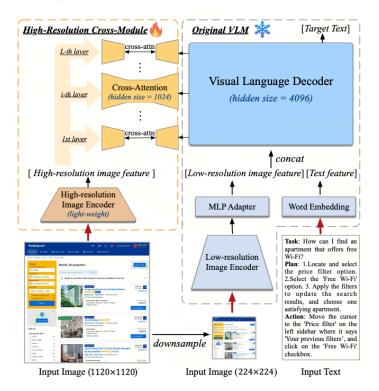


Visual encoding

Solution: light-weight compression layer.

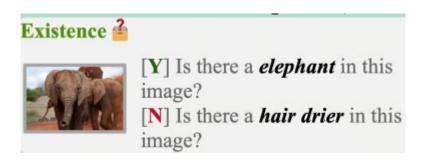
low-res feature as queries

CogAgent



The usage of human-annotated data signicantly boost the MLLM's ability.

Туре	Examples	Data	MME
Old models	BLIP-2, VL-Vicuna	Captioning	1293.84
New models	InstructBLIP, LLaVA-1.5	VQAv2, GQA	1531.31



Example of MME

Recommendation of some high-quality datasets.

General VQA	OCR	Instruction Tuning	Region Understanding	Pure Text
VQAv2 GQA A-OKVQA OK-VQA ScienceQA VGQA	TextCaps OCR-VQA DocVQA TextVQA ArxivQA	ShareGPT4V LRV ALLaVA All-Seeing V2 LLaVA-Instruct	RefCOCO series Flickr-30K VCR All-Seeing V2 LVIS GranD PSG ADE20K	ShareGPT Ultra-Chat

Data ratio is important but limited works on how to set it.

An empirical experience is: higher ratio for data with long text, VQA, and OCR (or other ability you want)

	open source	V.	5	closed source	In
Benchmark	InternVL 1.5	Grok-1.5V	GPT-4V	Claude-3 Opus	Gemini Pro 1.5
MMMU Multi-discipline	45.2%	53.6%	56.8%	59.4%	58.5%
athVista					
Math	53.5%	52.8%	49.9%	50.5%	52.1%
I2D	80.7%	88.3%	78.2%	88.1%	80.3%
agrams	30.776	08.5%	70.270	88.176	80.57
xtVQA xt reading	80.6%	78.1%	78.0%	-	73.5%
nartQA					
Charts	83.8%	76.1%	78.5%	80.8%	81.3%
DocVQA	90.9%	85.6%	88.4%	89.3%	86.5%
Documents	30.070	23.070	231170	05.070	55.575
RealWorldQA Real-world	66.0%	68.7%	61.4%	49.8%	67.5%
understanding					

Data ratio is important but limited works on how to set it.

An empirical experience is: higher ratio for data with long text, VQA, and then OCR (or other ability you want).

Table 8: Results on general multimodal benchmarks.

Model	Size	Open- Compass	MME	MMB dev(en)	MMB dev(zh)	MMMU val	Math- Vista	LLaVA Bench	Object HalBench	
Proprietary										
Gemini Pro	-	63.8	2148.9	75.2	74.0	48.9	45.8	79.9	-	
GPT-4V	-	63.2	1771.5	75.1	75.0	53.8	47.8	93.1	86.4 / 92.7	
Open-source 6B~34B										
Yi-VL-6B	6.7B	49.3	1915.1	68.6	68.3	40.3	28.8	51.9	-	
Qwen-VL-Chat	9.6B	52.1	1860.0	60.6	56.7	37.0	33.8	67.7	56.2 / 80.0	
Yi-VL-34B	34B	52.6	2050.2	71.1	71.4	45.1	30.7	62.3	-	
DeepSeek-VL-7B	7.3B	55.6	1765.4	74.1	72.8	38.3	36.8	77.8	-	
CogVLM-Chat	17.4B	52.5	1736.6	63.7	53.8	37.3	34.7	73.9	73.6 / 87.4	
Open-source 2B~3B										
DeepSeek-VL-1.3B	1.7B	46.0	1531.6	64.0	61.2	33.8	29.4	51.1	-	
MobileVLM V2	3.1B	-	1440.5(P)	63.2	-	-	-	-	-	
Mini-Gemini	2.2B	-	1653.0	59.8	-	31.7	-	-	-	
MiniCPM-V1	2.8B	47.6	1650.2	67.9	65.3	38.3	28.9	51.3	78.4 / 88.5	
MiniCPM-V2	2.8B	55.0	1808.6	69.6	68.1	38.2	38.7	69.2	85.5 / 92.2	

Table 7: Results on OCR-specific benchmarks.

Model	Size	OCRBench	TextVQA val	DocVQA test
Proprietary				
Gemini Pro	-	680	74.6	88.1
GPT-4V	-	645	78.0	88.4
Open-source 6B~34B				
Yi-VL-6B	6.7B	290	45.5*	17.1*
Qwen-VL-Chat	9.6B	488	61.5	62.6
Yi-VL-34B	34B	290	43.4*	16.9*
DeepSeek-VL-7B	7.3B	435	64.7*	47.0*
TextMonkey	9.7B	558	64.3	66.7
CogVLM-Chat	17.4B	590	70.4	33.3*
Open-source 2B~3B				
DeepSeek-VL-1.3B	1.7B	413	58.4*	37.9*
MobileVLM V2	3.1B	-	57.5	19.4*
Mini-Gemini	2.2B	-	56.2	34.2*
MiniCPM-V1	2.8B	366	60.6	38.2
MiniCPM-V2	2.8B	605	74.1	71.9

MiniCPM-V

Data ratio is important but limited works on how to set it.

An empirical experience is: higher ratio for data with long text, VQA, and then OCR

•	Category	Sources	Size	Ratio
	Short Caption	Flickr-30K [75], COCO [56]	560K	10.4%
	VQA	FM-IQA [29], VGQA [47], IconQA [64], GQA [39], VQAv2 [5] CLEVR [42], VizWiz [33], Visual7W [110], COCO-QA [77]	1430K	26.6%
	Knowledge	OKVQA [67], A-OKVQA [80], KVQA [81], ScienceQA [65]	60K	1.1%
Part-1	Grounding	RefCOCO [100]	570K	10.6%
	Reasoning	COMVINT [27], VCR [103], NLVR [87], LRV [57]	135K	2.5%
	Math	GeoQA [17], SMART-101 [21]	125K	2.3%
	OCR	DocVQA [69], TextVQA [84], OCR-VQA [72], ST-VQA [10], VisualMRC [89], DVQA [43] FigureQA [44], ChartQA [68], DeepForm [88], TabFact [20], InfographicsVQA [70] Kleister Charity [86], WikiTableQuestions [73], Real-CQA [2], AI2D [45], In-House-OCR	1720K	32.0%
	Chat	FSVQA [83], Visual-Dialog [25]	780K	14.5%

MiniCPM-V 15

Data ratio is important but limited works on how to set it.

An empirical experience is: higher ratio for data with long text, VQA, and then OCR

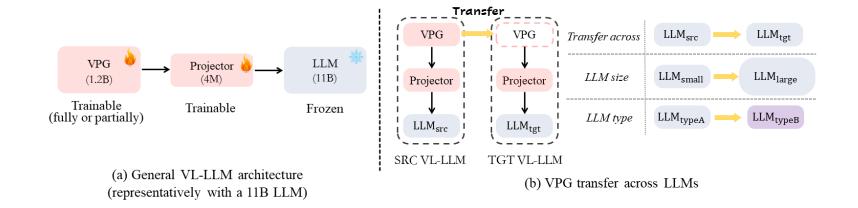
	OCR-Short	DocVQA, TextVQA, OCR-VQA, VisualMRC, ChartQA, AI2D	190K	8%
	OCR-Detail	In-House-Web, ArxivQA [53], LLaVAR [106], TextOCR-GPT4V [14], In-House-GPT4V	500K	18%
Part-2	Part-1	sample from part-1 data	400K	8%
	Instruct	SVIT [107], LLaVA-Instruct-150K [58], UniMM-Chat [101], ShareGPT4V [19] LVIS [31], ALLaVA [16]	2000K	56%
	Text-Only	Ultra-Chat [26], Alpaca [90], ShareGPT [108], BELLE [9] OpenOrca [55], OpenHermes [92], In-House-MiniCPM-SFT	-	10%

MiniCPM-V 16

Training Strategy

Transfer learning for efficient MLLM building.

Idea: transfer the visual part across LLMs.

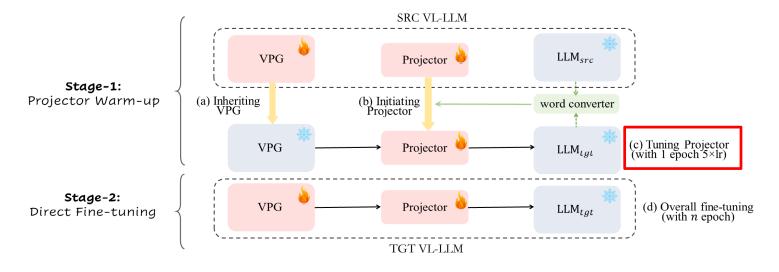


***** Training Strategy

Training Strategy

VPGTrans:

- (1) train projector with large Ir
- (2) normal training



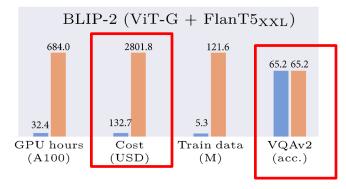
VPGTrans

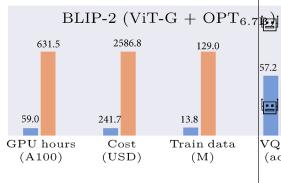
***** Training Strategy

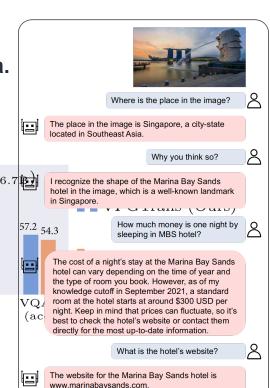
Training Strategy

We first validate it on BLIP-2 training.

We then transfer the visual encoder from OPT to Vicuna.

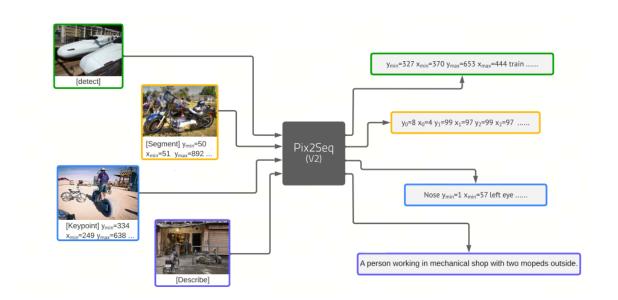






Training Strategy

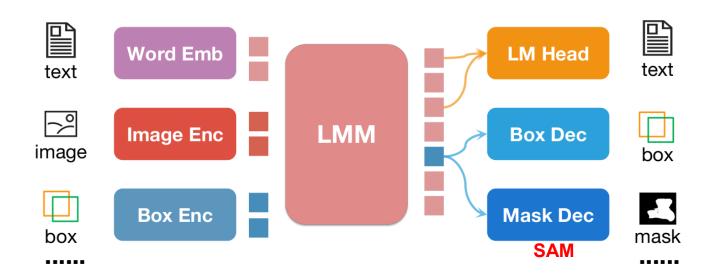
Pix2seq: let the MLLM to output everything as text, like **bounding boxes (detection)** and **object boundary point (segmentation)**.



costly training!!!

Training Strategy

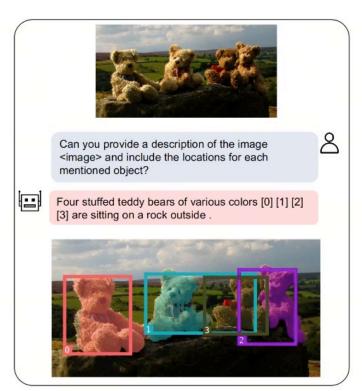
Pix2emb: connecting LLM and tools with emb. for efficient function extension.



***** Training Strategy

Training Strategy

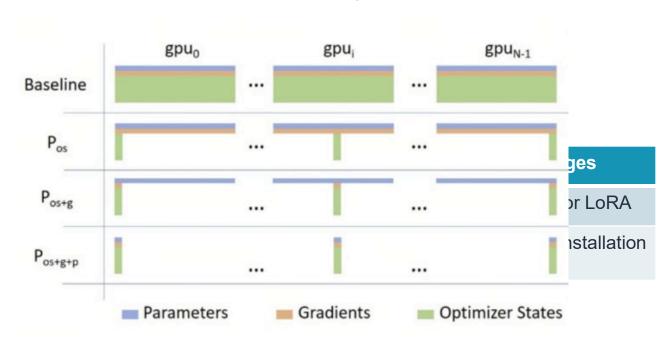
Pix2emb: connecting LLM with tools for efficient function extension.



***** Techniques

Acceleartion Techniques

DeepSpeed or FSDP: optimizer state, gradient, model parameters partitioning



***** Techniques

Acceleartion Techniques

Other Widely Used Practice

use bfloat16 gradient checkpointing for training quantization for inference

Data Loading

Parquet or TSV: save data items in large files for faster loading.

Pre-fetch: pre-fetch the batch before forward.

Packing: pack multiple data items into a pre-defined max length.

	No packing
batch 1	Item1: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
batch 2	Item1: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Packing Item1+2: XXXXXXXXXXXXXXXXXXXXXXXYYYYYYYY

Model Architecture

high-resolution + light-weight compression layer

Data

high-quality data high data ratio for VQA, Long-text data, data for ability you want (OCR)

Training Strategy

transfer learning, high learning rate for adaption layer (e.g. projector). pix2emb for function extension

Techniques

Deepspeed quantization, gradient checkpointing, bf16 parquet to avoid small files, pre-fetch, packing

Thanks!

Any questions?

