

From Multimodal LLM to Human-level Al

Modality, Instruction, Reasoning, Efficiency and Beyond

CC BY 4.0 DEED Attribution 4.0 International

This Keynote slide is licensed under a CC BY 4.0 International License.

https://mllm2024.github.io/CVPR2024/

Hao Fei National University of Singapore

Yuan Yao National University of Singapore

Ao Zhang National University of Singapore

Haotian Liu University of Wisconsin-Madison

Fuxiao Liu University of Maryland, College Park

Zhuosheng Zhang Shanghai Jiao Tong University

Hanwang Zhang Nanyang Technological University

Shuicheng Yan Kunlun 2050 Research, Skywork Al

: Part-VII

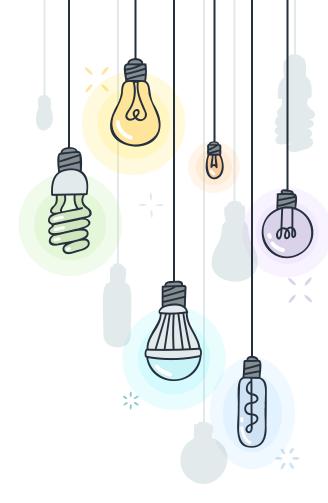
Efficient MLLM

Ao Zhang

PhD Student

National University of Singapore

https://waxnkw.github.io/



: Table of Content

+ Efficient MLLM

- × Overview
- × Efficient Architecture
- × Data
- × Training Strategy
- × Smaller Models
- × Other Techs

: Overview

• What do you mean by saying efficient MLLM?

Given a target performance, we want to reduce the cost for training and inference.

Architecture: efficient architectures for visual encoding.

Data: some observations in data composition.

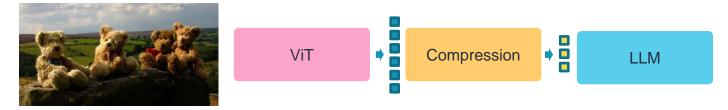
Training Strategy: use transfer learning or connect to pre-trained tools

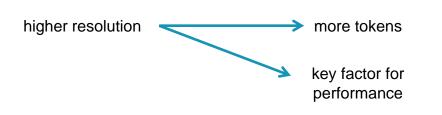
Smaller Models: use smaller models

Other Techs: use Deepspeed for training acceleration...

Visual encoding

High-resolution is a key factor for MLLM's performance (c.f. MM1). But high-res lead to significantly more tokens.



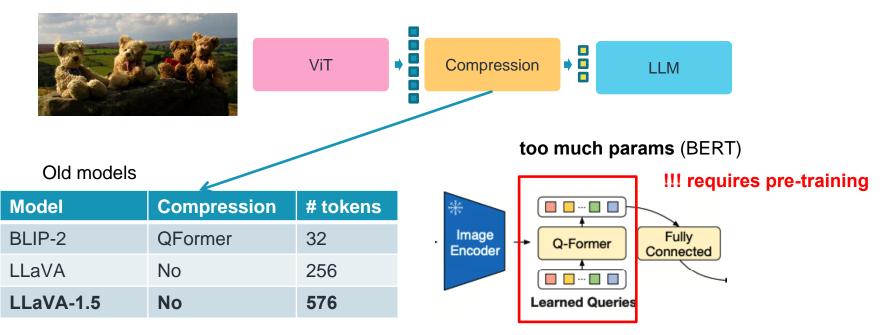


res.	#tokens
224x224	256
336x336	576
448x448	1024

CLIP VIT-I /14

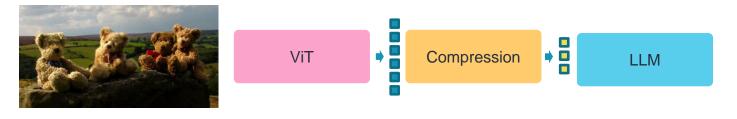
Visual encoding

The innovation for efficiency in architecture mainly lies on visual encoding.



[1] BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models. 2023
 [2] Visual Instruction Tuning. 2023

• Visual encoding Solution1: light-weight compression layer.



new models

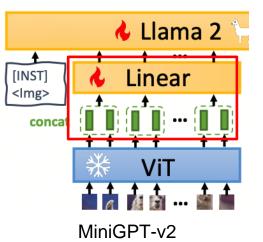
Qwen-VL MiniCPM-V Idefics2 MiniGPT-v2 Phi-3-vision

CogAgent

1 layer cross-attention

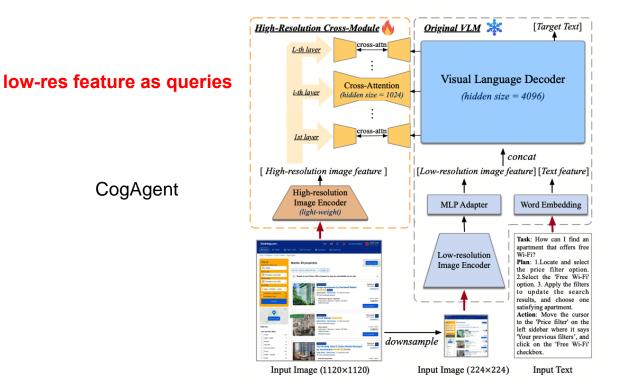
merge adjacent tokens with Linear

low-res feature as queries



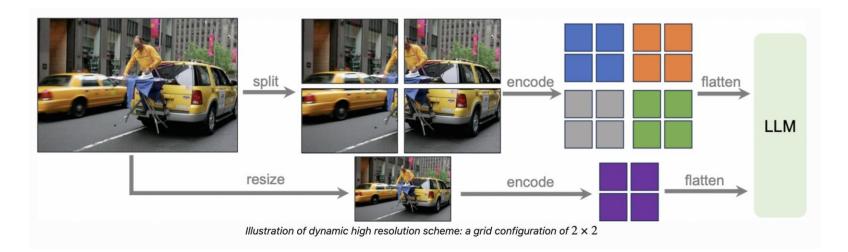
Visual encoding

Solution: light-weight compression layer.



Visual encoding Solution2: image slicing

(1) reduce the training gap between the ViT's pretraining resolution and MLLM's.(2) the ViT can process each slice separately and thus reduce the cost.



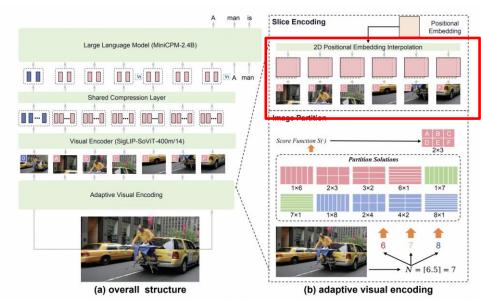
LLaVA-NeXT

Visual encoding

Examples: SPHINX, MM1, LLaVA-NeXT, MiniCPM-V 2.5, Idefics2..... How to retain aspect-ratios:

use padding.

use position embedding interpolation.



MiniCPM-V 2.5

The usage of human-annotated data signicantly boost the MLLM's capability.

Туре	Examples	Data	MME
Old models	BLIP-2, VL-Vicuna	Captioning	1293.84
New models	InstructBLIP, LLaVA-1.5	VQAv2, GQA	1531.31

Existence 🔒

[Y] Is there a *elephant* in this image?
[N] Is there a *hair drier* in this image?

Example of MME

Recommendation of some high-quality datasets.

General VQA	OCR	Instruction Tuning	Region Understanding	Pure Text
VQAv2 GQA A-OKVQA OK-VQA ScienceQA VGQA	TextCaps OCR-VQA DocVQA TextVQA ArxivQA	ShareGPT4V LRV ALLaVA All-Seeing V2	RefCOCO series Flickr-30K VCR All-Seeing V2 LVIS GranD PSG ADE20K	ShareGPT Ultra-Chat

Data ratio is important but limited works on how to set it.

An empirical experience is: higher ratio for data with long text, VQA, and OCR (or other ability you want)

	open source	V		closed source	In	tern-
Benchmark	InternVL 1.5	Grok-1.5V	GPT-4V	Claude-3 Opus	Gemini Pro 1.5	
MMMU Multi-discipline	45.2%	53.6%	56.8%	59.4%	58.5%	
MathVista Math	53.5%	52.8%	49.9%	50.5%	52.1%	
AI2D Diagrams	80.7%	88.3%	78.2%	88.1%	80.3%	
TextVQA Text reading	80.6%	78.1%	78.0%	-	73.5%	
ChartQA Charts	83.8%	76.1%	78.5%	80.8%	81.3%	
DocVQA Documents	90.9%	85.6%	88.4%	89.3%	86.5%	
RealWorldQA Real-world understanding	66.0%	68.7%	61.4%	49.8%	67.5%	

task	ratio	dataset
Captioning	53.9%	Laion-EN (en) [93], Laion-ZH (zh) [93], COYO (zh) [10],
Captioning	55.9%	GRIT (zh) [90], COCO (en) [17], TextCaps (en) [99]
Detection	5.2%	Objects365 (en&zh) [97], GRIT (en&zh) [90],
Detection	5.270	All-Seeing (en&zh) [119]
OCR (large)	32.0%	Wukong-OCR (zh) [29], LaionCOCO-OCR (en) [94],
OCK (large)	32.0%	Common Crawl PDF (en&zh)
		MMC-Inst (en) [61], LSVT (zh) [105], ST-VQA (en) [9]
		RCTW-17 (zh) [98], ReCTs (zh) [137], ArT (en&zh) [19],
OCR (small)	OCR (small) 8.9%	SynthDoG (en&zh) [41], COCO-Text (en) [114],
		ChartQA (en) [81], CTW (zh) [134], DocVQA (en) [82],
		TextOCR (en) [101], PlotQA (en) [85], InfoVQA (en) [83]

(a) Datasets used in the pre-training stage.

[1] InternVL: Scaling up Vision Foundation Models and Aligning for Generic Visual-Linguistic Tasks. 2023

Data ratio is important but limited works on how to set it.

An empirical experience is: higher ratio for **data with long text**, **VQA**, **and then OCR** (or other ability you want).

Model	Size	Open- Compass	MME	MMB test (en)	MMB test (cn)	MMMU val	Math- Vista	LLaVA Bench	RW QA	Object HalBench
Proprietary										
Gemini Pro	-	62.9	2148.9	73.6	74.3	48.9	45.8	79.9	60.4	2 -
GPT-4V (2023.11.06)	-	63.5	1771.5	77.0	74.4	53.8	47.8	93.1	63.0	86.4 / 92.7
Open-source										
DeepSeek-VL-1.3B	1.7B	46.2	1531.6	66.4	62.9	33.8	29.4	51.1	49.7	-
Mini-Gemini	2.2B	-	1653.0	-	-	31.7	-	-	-	-
Yi-VL-6B	6.7B	48.9	1915.1	68.4	66.6	40.3	28.8	51.9	53.5	-
Qwen-VL-Chat	9.6B	51.6	1860.0	61.8	56.3	37.0	33.8	67.7	49.3	56.2 / 80.0
Yi-VL-34B	34B	52.2	2050.2	72.4	70.7	45.1	30.7	62.3	54.8	79.3 / 86.0
CogVLM-Chat	17.4B	54.2	1736.6	65.8	55.9	37.3	34.7	73.9	60.3	73.6/87.4
DeepSeek-VL-7B	7.3B	54.6	1765.4	73.8	71.4	38.3	36.8	77.8	54.2	-
Idefics2	8.0B	57.2	1847.6	75.7	68.6	45.2	52.2	49.1	60.7	-
Bunny-Llama-3-8B	8.4B	54.3	1920.3	77.0	73.9	41.3	31.5	61.2	58.8	-
XTuner-Llama-3-8B-v1.1	8.4B	53.3	1818.0	71.7	63.2	39.2	40.0	69.2	-	-
LLaVA-NeXT Llama-3-8B	8.4B	-	1971.5	-	-	41.7	-	80.1	60.0	-
MiniCPM-V 1.0	2.8B	47.5	1650.2	64.1	62.6	38.3	28.9	51.3	51.2	78.4/88.5
MiniCPM-V 2.0	2.88	54.5	1808.6	69.1	66.5	38.2	38.7	69.2	55.8	85.5/92.2
MiniCPM-Llama3-V 2.5	8.5B	65.1	2024.6	77.2	74.2	45.8	54.3	86.7	63.5	89.7 / 95.0

MiniCPM-Llama3-V 2.5

Data ratio is important but limited works on how to set it.

An empirical experience is: higher ratio for data with long text, VQA, and then OCR

(Category	Sources	Size	Ratio
	Short Caption Flickr-30K [75], COCO [56]		560K	10.4%
	VQA	FM-IQA [29], VGQA [47], IconQA [64], GQA [39], VQAv2 [5] CLEVR [42], VizWiz [33], Visual7W [110], COCO-QA [77]	1430K	26.6%
	Knowledge	OKVQA [67], A-OKVQA [80], KVQA [81], ScienceQA [65]	60K	1.1%
Part-1	Grounding	RefCOCO [100]	570K	10.6%
	Reasoning	COMVINT [27], VCR [103], NLVR [87], LRV [57]	135K	2.5%
	Math	GeoQA [17], SMART-101 [21]	125K	2.3%
	OCRDocVQA [69], TextVQA [84], OCR-VQA [72], ST-VQA [10], VisualMRC [89], DVQA [43]FigureQA [44], ChartQA [68], DeepForm [88], TabFact [20], InfographicsVQA [70]Kleister Charity [86], WikiTableQuestions [73], Real-CQA [2], AI2D [45], In-House-OCR		1720K	32.0%
	Chat FSVQA [83], Visual-Dialog [25]		780K	14.5%

MiniCPM-Llama3-V 2.5

Data ratio is important but limited works on how to set it.

An empirical experience is: higher ratio for data with long text, VQA, and then OCR

	OCR-Short	DocVQA, TextVQA, OCR-VQA, VisualMRC, ChartQA, AI2D	190K	8%
	OCR-Detail	In-House-Web, ArxivQA [53], LLaVAR [106], TextOCR-GPT4V [14], In-House-GPT4V	500K	18%
Part-2	Part-1	sample from part-1 data	400K	8%
	Instruct	SVIT [107], LLaVA-Instruct-150K [58], UniMM-Chat [101], ShareGPT4V [19] LVIS [31], ALLaVA [16]	2000K	56%
	Text-Only	Ultra-Chat [26], Alpaca [90], ShareGPT [108], BELLE [9] OpenOrca [55], OpenHermes [92], In-House-MiniCPM-SFT	-	10%

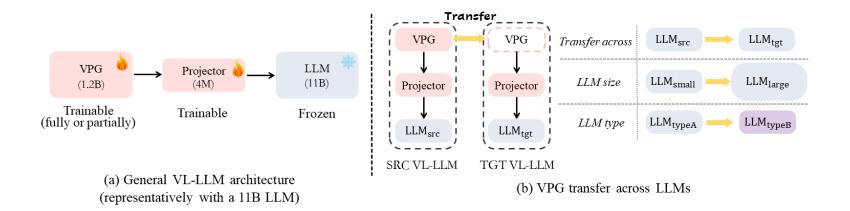
Training Strategy

(0)

Training Strategy

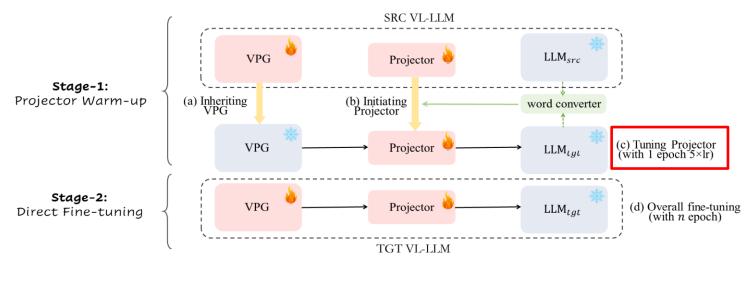
Training Strategy

Transfer learning for efficient MLLM building. **Idea:** transfer the visual part across LLMs.

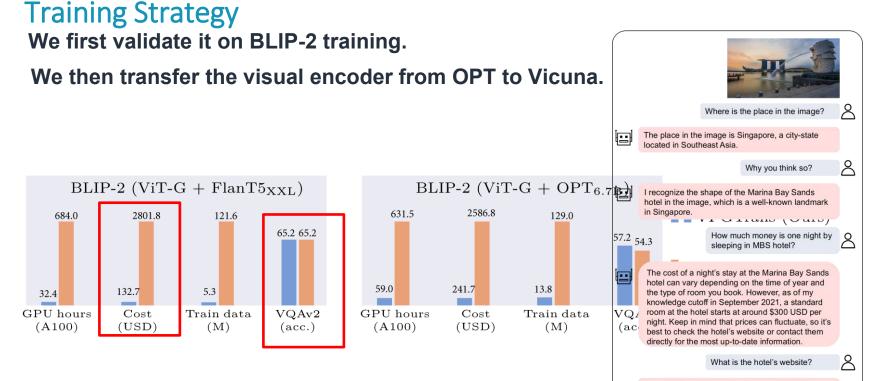


% Training Strategy

- Training Strategy VPGTrans:
 - (1) train projector with large Ir
 - (2) normal training



:< Training Strategy</pre>

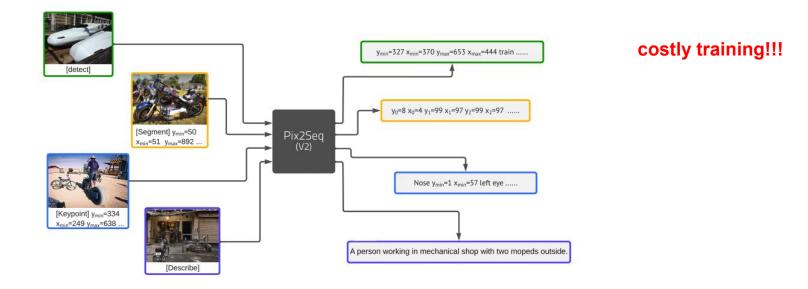


The website for the Marina Bay Sands hotel is www.marinabaysands.com.

:< Training Strategy</pre>

Training Strategy

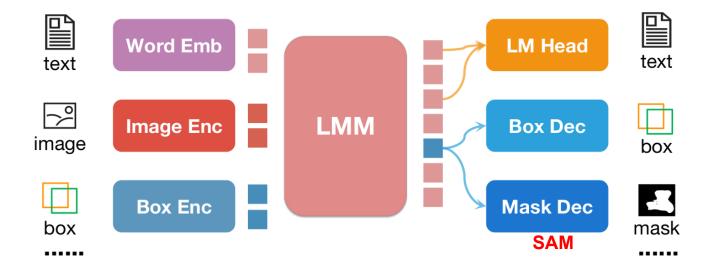
Pix2seq: let the MLLM to output everything as text, like **bounding boxes (detection)** and **object boundary point (segmentation)**.



x< Training Strategy</pre>

Training Strategy

Pix2emb: connecting LLM and tools with emb. for efficient function extension.



[1] NExT-Chat: An LMM for Chat, Detection and Segmentation. 2023

x Training Strategy

Training Strategy

Pix2emb: connecting LLM with tools for efficient function extension.

Smaller Models

<u>(</u>2)

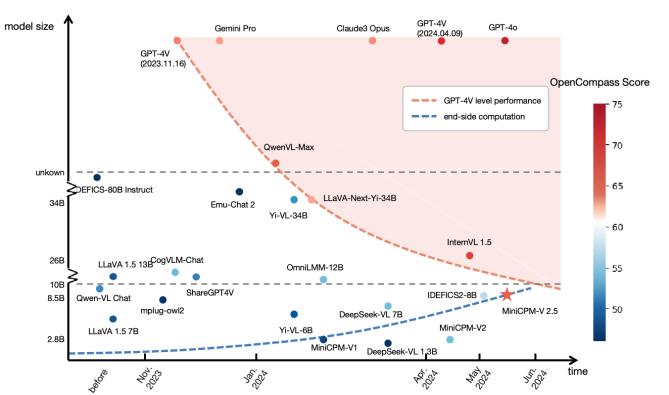
A

 \mathcal{M}

Smalller Model

Smalller Model

Some models have less model parameters, but not worse performance.



Smalller Model

MiniCPM-V2 2.8B

Some models have less model parameters, but not worse performance.

Model	Size	Open- Compass	MME	MMB dev(en)	MMB dev(zh)	MMMU val	Math- Vista	LLaVA Bench	Object HalBench
Proprietary									
Gemini Pro	-	63.8	2148.9	75.2	74.0	48.9	45.8	79.9	-
GPT-4V	-	63.2	1771.5	75.1	75.0	53.8	47.8	93.1	86.4 / 92.7
Open-source 6B~34B									
Yi-VL-6B	6.7B	49.3	1915.1	68.6	68.3	40.3	28.8	51.9	-
Owen-VL-Chat	9.6B	52.1	1860.0	60.6	56.7	37.0	33.8	67.7	56.2 / 80.0
Yi-VL-34B	34B	52.6	2050.2	71.1	71.4	45.1	30.7	62.3	-
DeepSeek-VL-7B	7.3B	55.6	1765.4	74.1	72.8	38.3	36.8	77.8	-
CogVLM-Chat	17.4B	52.5	1736.6	63.7	53.8	37.3	34.7	73.9	73.6/87.4
Open-source 2B~3B									
DeepSeek-VL-1.3B	1.7B	46.0	1531.6	64.0	61.2	33.8	29.4	51.1	-
MobileVLM V2	3.1B	-	1440.5(P)	63.2	-	-	-	-	-
Mini-Gemini	2.2B	-	1653.0	59.8	-	31.7	-	-	-
MiniCPM-V1	2.8B	47.6	1650.2	67.9	65.3	38.3	28.9	51.3	78.4 / 88.5
MiniCPM-V2	2.8B	55.0	1808.6	69.6	68.1	38.2	38.7	69.2	85.5 / 92.2

Table 8: Results on general multimodal benchmarks.

• Phi-3-Vision 4.2B

Some models have less model parameters, but not worse performance.

Category	Benchmark	Phi-3-Vision- 128K-In	Llava-1.6 Vicuna-7B	QWEN-VL Chat	Llama3-Llava- Next-8B	Claude-3 Haiku	Gemini 1.0 Pro V	GPT-4V- Turbo
Popular aggregated	MMMU (val)	40.4	34.2	39.0	36.4	40.7	42.0	55.5
benchmark	MMBench (dev-en)	80.5	76.3	75.8	79.4	62.4	80.0	86.1
Visual scientific knowledge reasoning	ScienceQA (img-test)	90.8	70.6	67.2	73.7	72.0	79.7	75.7
Visual math	MathVista (testmini)	44.5	31.5	29.4	34.8	33.2	35.0	47.5
reasoning	InterGPS (test)	38.1	20.5	22.3	24.6	32.1	28.6	41.0
	AI2D (test)	76.7	63.1	59.8	66.9	60.3	62.8	74.7
Chart reasoning	ChartQA (test)	81.4	55.0	50.9	65.8	59.3	58.0	62.3
Document Intelligence	TextVQA (val)	70.9	64.6	59.4	55.7	62.7	64.7	68.1
Object visual presence verification	POPE (test)	85.8	87.2	82.6	87.0	74.4	84.2	83.7

Other Techniques

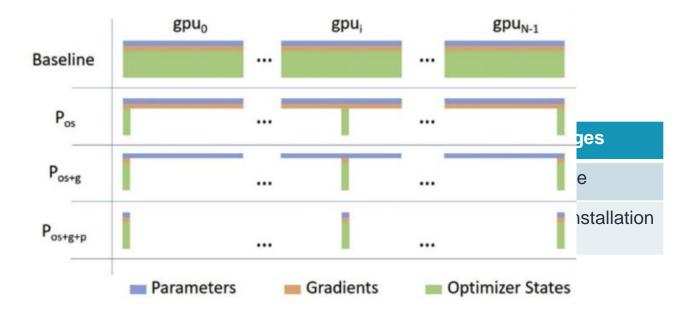
(0)

A

Characteristic Techniques

• Acceleartion Techniques

DeepSpeed or FSDP: optimizer state, gradient, model parameters partitioning



* Techniques

Acceleartion Techniques

Other Widely Used Practice

use bfloat16 gradient checkpointing for training quantization for inference

Data Loading

Parquet or TSV: save data items in large files for faster loading. **Pre-fetch:** pre-fetch the batch before forward.

Packing: pack multiple data items into a pre-defined max length.

	No packing	Packing
batch 1	Item1: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Item1+2: XXXXXXXXXXXXXXXXXXXXXXXXYYYYYYY
batch 2	Item1: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	34

Summary

Model Architecture

high-resolution + light-weight compression layer

Data

high-quality data high data ratio for VQA, Long-text data, data for ability you want (OCR)

Training Strategy

transfer learning, high learning rate for adaption layer (e.g. projector). pix2emb for function extension

Smaller Models

use smaller models can natually reduce the inference cost

Techniques

Deepspeed quantization, gradient checkpointing, bf16 parquet to avoid small files, pre-fetch, packing **Any questions?** You can find me at:

+ aozhang@u.nus.edu

