

Evaluations and Benchmarks in Context of Multimodal LLM

https://mllm2024.github.io/CVPR2025/

Hao Fei *National University of Singapore*

Xiang Yue
Carnegie Mellon University

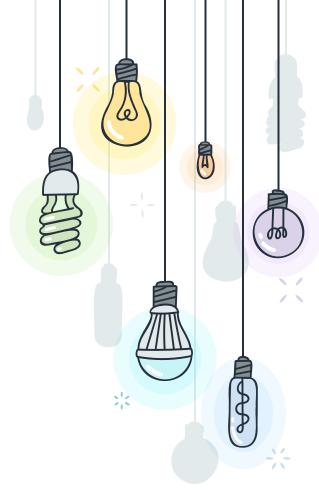
Kaipeng Zhang
Shanghai Al Lab

Long Chen

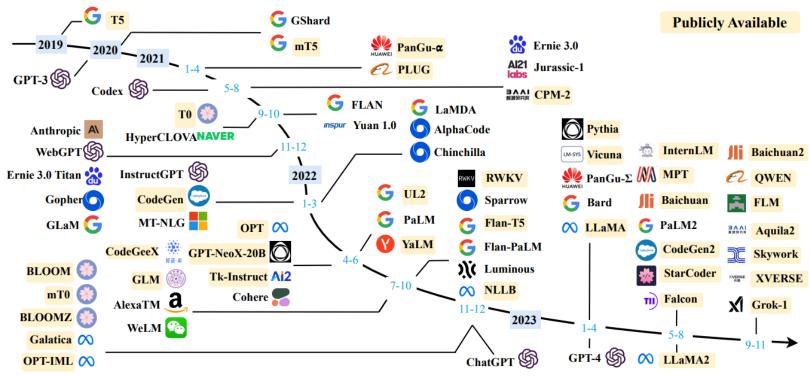
HKUST

Jian Li
Tencent YoutuLab

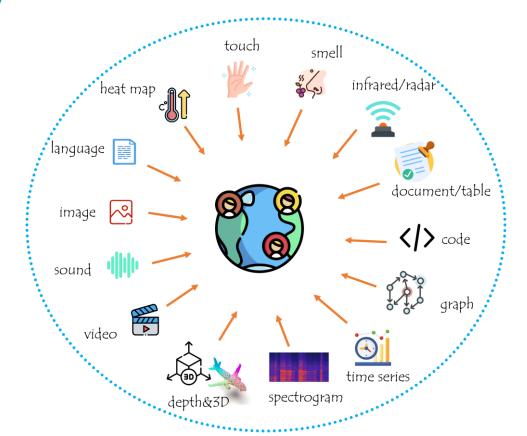
Xinya Du *University of Texas at Dallas*



Background and Introduction


Xiang YuePostdoc Researcher
Carnegie Mellon University
https://xiangyue9607.github.io/

Intelligence in Language

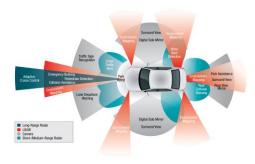

Very Rapid Evolvement of Language-based LLMs

Intelligence in Multi-Sensory Data

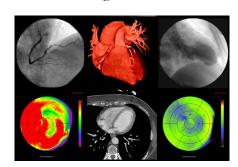
Harnessing Multimodality

This world we live in is replete with multimodal information & signals, not just language.

Intelligence in Multi-Sensory Data


Harnessing Multimodality

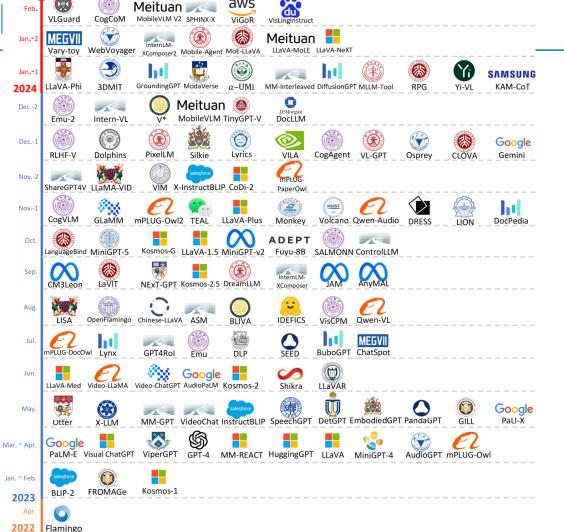
This world we live in is replete with multimodal information & signals, not just language.


Autonomous Driving Systems

In this application, vehicles use a combination of visual data (cameras), spatial data (LiDAR), and auditory signals (sonar) to navigate safely.

Healthcare Diagnostics

Medical imaging tools like MRI, CT scans, and X-rays, along with patient history and verbal symptoms, are used to diagnose diseases.


Smart Home Assistants

Devices like Amazon Alexa and Google Home use voice commands (audio), physical interaction (touch), and sometimes visual cues to

Intelligence in

Trends of MLLMs

Intelligence in Multimodal

Trends of MLLMs

"If you can't measure it, you can't manage it"
--Peter Drucker (Father of Management)

Why should we focus on evaluation?

We Optimize What We Measure

Evaluation Reflects Real-World Use

Misleading Metrics Can Harm Trust

☆ Goal of This Tutorial

- → What are now?
 - → Walking through the recent key techniques on building MLLM evaluations and benchmarks
 - + Taxonomies of existing research.
- → Where to go next?
 - ⊹ Key insights, current challenges & open problems.
 - + How to build next generation MLLM benchmarks?

Evaluations of Multimodal LLMs

Schedule Overview

Wed, 11 June, 2024, <u>13:00-17:00</u> Nashville Local Time

Time	Section	Presenter
13:00-13:05	Part 1: Background and Introduction	Xiang Yue
13:05-13:40	Part 2: Existing MLLM Benchmark Overall Survey	Jian Li
13:40-14:15	Part 3: Vision-Language Capability Evaluation	Kaipeng Zhang
14:15-14:50	Part 4: Video Capability Evaluation	Long Chen
14:50-15:10	Coffee Break	
15:10-15:45	Part 5: Expert-level Discipline Capability Evaluation	Xiang Yue
15:45-16:20	Part 6: Beyond Evaluation: Path to Multimodal Generalist	Hao Fei
16:20-17:00	Part 7: Multimodal Reasoning & Agent	Xinya Du

From MLLMs to Human-level Al

- Contact & QA & Discussions
 - + All slides and reading list are available at tutorial homepage:

https://mllm2024.github.io/CVPR2025/

- + We welcome all Q&A and discussions via Google Group:
 - > Post your questions on Google Group:

https://groups.google.com/g/mllm24

mllm24@googlegroups.com

